
Computing Alignment Plots Efficiently
. . . in theory and practice

Peter Krusche Alexander Tiskin

Department of Computer Science
University of Warwick, Coventry, CV4 7AL, UK

ParCo 2009



Motivation

This talk is about loss-free local
alignment of (biological) sequences.

Our loss-free alignment algorithms find
all local alignments of two input
sequences.

This is computationally very demanding.



What is in this talk?

A computational technique for
computing multiple local alignments at
the same time.

Some discussion about its efficient
implementation.

Speedup results from different types of
parallelism.



String Terminology

A string is a sequence of characters from
an alphabet ˚.

Example (Genome Data)

Strings are sequences of characters from
{ A, C, G, T }

CAGAGGATGAGGATG



String Terminology

Contiguous subsequences are called
substrings/windows/factors.

CAGAGGATGAGGATG

We also consider not necessarily
contiguous subsequences.

CAGAGGATGAGGATG



String Terminology

Contiguous subsequences are called
substrings/windows/factors.

CAGAGGATGAGGATG

We also consider not necessarily
contiguous subsequences.

CAGAGGATGAGGATG



Approximate String Comparison

Hamming distance: count mismatches.

dist(bbbabababba, abbbbabaaba) = 3

Used e.g. in dot-plots for local
comparison.



String Alignment

Align the maximum number of letters,
preserving order:

abbabbbabbaba

bbabaabbba



String Alignment

Align the maximum number of letters,
preserving order:

abbabbba bbaba

bba b aabb ba



String Alignment

Align the maximum number of letters,
preserving order:

bba b aabb ba

: inserted gaps

abbabbba bbaba



String Alignment

Align the maximum number of letters,
preserving order:

abbabbba bbaba

bba b aabb ba

The aligned letters form the longest com-
mon subsequence (LCS).



String Alignment vs. LCS

The length of the LCS of two strings is a
measure for their similarity.

We define the LCS distance as:

dist(x; y) = m+ n` 2 ´ jLCS(x; y)j



String Alignment and Edit Distances

Edit distance
Minimize the number of insertions,
deletions, and exchange operations.

Weighted alignment
Assign weights to aligning each pair of
characters from ˚ using a pairwise
score matrix.



String Alignment and Edit Distances

Edit distance
Minimize the number of insertions,
deletions, and exchange operations.

Weighted alignment
Assign weights to aligning each pair of
characters from ˚ using a pairwise
score matrix.



O(n2) Solutions for String Alignment

Longest common subsequence
Wagner & Fischer, ’74

Global (weighted) alignment
Needleman & Wunsch, ’70

Local alignment
Smith & Waterman ’81



Faster but less accurate approaches

BLAST/similar approaches
Heuristic search based on frequent
DNA substrings to “seed” alignments.

This is very fast!

Less sensitive for aligning regions of
low similarity.

) Can miss alignments!



Faster but less accurate approaches

BLAST/similar approaches
Heuristic search based on frequent
DNA substrings to “seed” alignments.

This is very fast!

Less sensitive for aligning regions of
low similarity.

) Can miss alignments!



Faster but less accurate approaches

Dot-plots
Compare all
substrings of a fixed
length w using the
Hamming distance.

Plot a point for every
window pair scoring
above threshold.

) Does not account
for gaps!



Faster but less accurate approaches

Dot-plots
Compare all
substrings of a fixed
length w using the
Hamming distance.

Plot a point for every
window pair scoring
above threshold.

) Does not account
for gaps!



Alignment Plots

Input: Strings x and y, jxj = m, jyj = n,
fixed window length w.

We compare all windows of length w in
x to all windows of length w in y
(pairwise).

We use a weighted alignment score for
comparison.



Computing Alignment Plots

“Naive” algorithm:
Compute scores separately
for each pair of windows in
O(mnw2) time.

Heuristic improvements
(Ott, 2008): ˆ25 speedup,
same asymptotic running
time.

abbabbba bb

bba b aabb ba

LLCS = 7



Computing Alignment Plots

Why?
Very sensitive local comparison. Finds
things BLAST doesn’t.

How big?
Input sequences can be very large:
entire genomes should be possible
(30MBases – 1TBase)

Window sizes?
Typical w-value: around 100.



New Algorithms for Alignment Plots

Algorithmic Improvements
We reduce dependency on window size:
New practical O(mnw) method.

Vector-Parallelism
We can (still) use vector-parallelism.

Parallel Computation
Multi-processor computation: running
time O(mnw=p) on p processors.



Algorithmic Tool: Semi-local String
Comparison

Definition
Given two strings x and y, compute
highest-score matrix A with

A(i; j) = jLCS(x; yi : : : yj)j.

We compare all substrings in y to entire
string x.

Algorithm [Schmidt:98,Alves+:06]

We can compute A in O(n2) time.



Implicit Highest-Score Matrices

Theorem (Tiskin:05)

The highest-score matrix for comparing x
and y can be represented by O(m+ n)
critical points.

Seaweed Algorithm

We can compute critical points
incrementally by dynamic programming
in O(mn).



The Seaweed Algorithm

We draw the alignment-dag. . .
a b c a

a

c

b

c

yx



The Seaweed Algorithm

. . . that corresponds to the input strings.
a b c a

a

c

b

c

yx



The Seaweed Algorithm

We insert blue edges for every match.
a b c a

a

c

b

c



The Seaweed Algorithm

Blue edges have weight 1.
a b c a

a

c

b

c



The Seaweed Algorithm

Black edges have weight 0.
a b c a

a

c

b

c



The Seaweed Algorithm

We can extend the dag with matches to
the left and right.

a b c a

a

c

b

c

yx



The Seaweed Algorithm

Drawing this dag partitions the plane
into cells.

a b c a

a

c

b

c

yx



The Seaweed Algorithm

Alignment lengths in A(i; j) correspond
to longest paths.

a b c a

a

c

b

c

yx



The Seaweed Algorithm

Alignment lengths in A(i; j) correspond
to longest paths.

a b c a

a

c

b

c

yx



The Seaweed Algorithm

We compute the lengths of these paths
implicitly by tracing seaweeds.

a b c a

a

c

b

c



The Seaweed Algorithm

We trace seaweeds
through cells.

i

j ?



The Seaweed Algorithm

We trace seaweed
start and end
points.

i

j ?



The Seaweed Algorithm

In a cell, seaweeds
may or may not
cross.

i

j ?



The Seaweed Algorithm

Seaweeds don’t
cross in match
cells.

i

j ?



The Seaweed Algorithm

Two seaweeds are
allowed to cross at
most once.

i

j

if i < j

?



The Seaweed Algorithm

Two seaweeds are
allowed to cross at
most once.

i

j

if i < j

?

if i > j



Querying the LCS Distance

Given all seaweeds. . .

a b c a

a

c

b

c



Querying the LCS Distance

. . . we can count critical points:

a b c a

a

c

b

c



Querying the LCS Distance

. . . and obtain the LLCS:
a b c a

a

c

b

c

LLCS = j - i - #CP

i j



Computing Alignment Plots Using Seaweeds

We compute seaweeds for y against all
substrings of x with length w.

yx

g w



Computing Alignment Plots Using Seaweeds

Inside each strip, we count seaweeds
within a sliding w-window.

yx

g w



Computing Alignment Plots Using Seaweeds

Inside each strip, we count seaweeds
within a sliding w-window.

yx

g w



Computing Alignment Plots Using Seaweeds

Inside each strip, we count seaweeds
within a sliding w-window.

yx

g w



Computing Alignment Plots Using Seaweeds

Inside each strip, we count seaweeds
within a sliding w-window.

yx

g w



Computing Alignment Plots Using Seaweeds

Inside each strip, we count seaweeds
within a sliding w-window.

yx

g w



Computing Alignment Plots Using Seaweeds

We have m` w + 1 strips, each strip
takes time O(nw) to process.

) We get running time O(mnw).



Further Notes on Seaweeds

We can deal with rational pairwise score
matrices (constant factor slowdown).

w= = 1
w 6= = 0
w = `0:5

Mismatch Match

’$’

’$’ ’$’

’$’

’a’

’b’

’a’

’a’

S(x; y) = LLCS(x0; y0)` 0:5 ´ (m+ n)



Vector-Parallel Seaweeds

Seaweed implementation using sliding
w-window in a strip:

w

w



Vector-Parallel Seaweeds

We only need to count the seaweeds
which start and end within the w-window.

w

Store maximally w seaweeds
which have reached the bottom.



Vector-Parallel Seaweeds

Problem: data-dependency between cell
outputs when computing seaweeds in
columns.

w

Downward cell
output
dependencies!



Vector-Parallel Seaweeds

Standard solution: Process cells in a
wavefront in parallel.

Cell outputs are
independent.



Required Vector Element Size

We need to trace seaweeds over a
maximum distance of 2w ` 1.

w w

We need O(dlog2we+ 1) bits for each
vector element.



Required Vector Element Size

We need to trace seaweeds over a
maximum distance of 2w ` 1.

w w

We need O(dlog2we+ 1) bits for each
vector element.



Using Coarse-Grained Parallelism

Computation for individual strips is independent:

n

w
1

2

p



Implementation Notes

Current implementation uses C++ and
Intel Assembly (x86 and x86_64, MMX).

Explicit vectorisation of the inner loop
using assembler code.

The core of the code consists of a small
library for implementing operations on
vectors of !-bit integers.



Single CPU Execution Times

Data Set Mikey Berti Jimmy Henry

Input Size 2.7k ˆ 0.6k 2.7k ˆ 2.3k 15k ˆ 97k 80kˆ 80k

Heur 5.1 (¨ 1.0) 41.1 (¨ 1.0) 2677 (¨ 1.0) 11708 (¨ 1.0)

BLCS 3.6 (¨ 1.4) 37.3 (¨ 1.1) 3680 (¨ 0.7) 16191 (¨ 0.7)

Sea-16 1.4 (¨ 3.6) 10.8 (¨ 3.8) 1026 (¨ 2.6) 4514 (¨ 2.6)

Sea-8 0.5 (¨ 10.2) 3.8 (¨ 10.8) 368 (¨ 7.3) 1614 (¨ 7.3)

Sea-8 SMPˆ2 0.3 (¨ 17.0) 3.4 (¨ 12.1) 210 (¨ 12.7) 821 (¨ 14.3)

(Execution times in seconds)



Parallel Efficiency using MPI

Quadcore Desktop, Linux x86_64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4

cores

Ef
fi

ci
en
cy

Mikey
Berti
Jimmy
Henry



Parallel Efficiency using MPI

MacOS X Task Farm, 32-bit Darwin

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 8 16 32

cores

Ef
fi

ci
en
cy

Mikey
Berti
Jimmy
Henry



Parallel Efficiency using MPI

IBM HPC Cluster, Linux x86_64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 8 16 32 64

cores

Ef
fi

ci
en
cy

Mikey
Berti
Jimmy
Henry



Summary

We have shown a new, fast algorithm for
loss-free local sequence alignment.

Main contribution: reduced dependency
of runtime on the length of the local
alignments.

Method allows to use different types of
parallelism.



Outlook

Better speedup for small problem sizes by smarter
partitioning.
This is useful when using the code for small sequences as a web
service, like BLAST.

Test suitability for GPU implementation.
Lots of inherent parallelism. . .

Exploit strip overlap: we can reduce complexity to
O(mn

p
w).

The best known theoretical method has complexity O(mn), but
may not be practical.



Thanks for listening!



Questions?

Introduction
String Comparison Basics
String Alignment

Alignment Plots
What are Alignment Plots?
New Algorithms for Alignment Plots
Using Vector-Parallelism

Efficient Implementation
Implementation Notes
Experimental Results

Summary and Outlook


	Introduction
	String Comparison Basics
	String Alignment

	Alignment Plots
	What are Alignment Plots?
	New Algorithms for Alignment Plots
	Using Vector-Parallelism

	Efficient Implementation
	Implementation Notes
	Experimental Results

	Summary and Outlook
	Appendix
	


